REYNOLDS RELAXATION OF FRICTIONAL STRESS
IN NONEQUILIBRIUM TURBULENT BOUNDARY LAYER

V. V. Zyabrikov UDC 532.526

Reynolds relaxation of frictional stress is analyzed in a nonequilibrium turbulent boundary
layer with sign reversing longitudinal pressure gradient.

Relaxation Phenomena in Turbulent Boundary Layer. In recent studies of turbulent boundary layers,
there appears a distinct trend away from the use of Boussinesq's classical relation for determining the local
Reynolds frictional stress T =—p <u'v'> and toward the use of new relaxational relations between frictional
stress and average-velocity field instead. An example is the Hinze relaxation equation [1]
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free of local boundedness. Without the Lx87/8x on the left-hand side, this equation becomes the Boussinesq
equation for local stress. According to the relaxation equation, the magnitude of the Reynolds frictional
stress at some point depends on magnitudes of the Reynolds stress in the upstream region preceding that point
and thus on the "history" of the stream. The relaxation equation, therefore, expresses the ability of a "vor-
tical" structure of turbulence to "memorize" the preceding flow conditions.

In Eq. (1) we have Ly denoting the path length of longitudinal relaxation, here assumed to be 1x = ax
(value of the proportionality factor @ is, according to experimental data [2], within the 0.3-0.4 range), and
# denoting the eddy dynamic viscosity according to Boussinesq. The relaxation equation (1) can be derived
from the equation of stress transfer for Reynolds frictional stress, with several simplifications. An essential
factor is that the equation has a solution in quadratures
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where x; and T, are, respectively, the abscissa and the Reynolds frictional stress corresponding to y in the
initial section of the boundary layver [2, 3].

The path length Ly of longitudinal relaxation has already been determined experimentally and the vali-
dity of the relaxation Eq. (1) has been verified in specific cases {2]. In that study [2], for instance, the re-
laxation of average and fluctuation characteristics of a stream in a turbulent boundary layer at longitudinally
streamlined plate was examined. A half-sphere resting on the plate surface, with a radius equal to approxi-
mately 40% of the local thickness of the boundary layer, served as barrier perturbing the stream. Measure-
ments of the Reynolds stress at various distances from the plate surface revealed that the relaxation path had
become longer upon transition from inner to outer region of the turbulent boundary layer, with the Reynolds
stress perturbed by the half-sphere returning to its unperturbed level at correspondingly farther abscissas x.
Thus, by measuring the turbulence characteristics of a stream in the process of relaxation, P. J. H. Builtjes
confirmed the fundamental conclusion at which F., Klauser had arrived in 1959 already [4] on the basis of mea-
surements of relaxing velocity profiles in a turbulent boundary layer at a plate with a cylinder serving as
perturbator. Klauser's theory reduces to the following: the outer region of a boundary layer with large "vor-
tices" returns to its unperturbed state slower than the inner region with "smaller" vortices does. This means
the ability of turbulent "vortices" to "memorize" the preceding states of a stream increases as their scale
increases. This trend is further confirmed in the more intricate case of a nonequilibrium turbulent boundary
layer with sign reversing pressure gradient.
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"Memory" Effects in Turbulent Boundary Layer with Sign Reversing Pressure Gradient. The author has
evaluated the results of measurements, wide in scope and quite accurate, made by the Japanese scientists
Tsuij and Morikawa [5] in experiments involving a turbulent boundary layer with pressure gradient. A longi-
tudinal distribution of the pressure gradient was established by means of a flexible wall shaped so as to pro-
duce a boundary layer without separation in the diffuser zones and without restoration of laminar flow in the
nozzle zones. The corresponding velocity ug distribution along the outer edge of the boundary layer is shown
in Fig. 1. Study [5] contains experimental data only, without theoretical discussion. For determining the
Reynolds frictional stress according to the Boussinesq "local™ relation, this author used the two-layer method
of stipulating the eddy dynamic viscosity according to Prandtl u; = onéy?au/dy (v = 0.4) in the inner region and
according to Klauser y = pKugb™ (K = 0.0168) in the outer region of the boundary layer [6]. The derivative
ou/gy was determined through graphical differentiation of experimental velocity profiles in sections of the
boundary layer. After the local Reynolds frictional stresses had been determined, "relaxation" analogs were
calculated according to relation (2). As the initial value T, was used as the experimental one in the first mea-
sured T-profile (x = 1.9 m) with the corresponding value of the dimensionless distance from the wall. The path
length of longitudinal relaxation was stipulated according to the relation Ly = 1506 ** | which in the absence of
a pressure gradient coincides with the Builtjes length Ly = 0.31x [2]. The graph in Fig. 2 depicts longitudinal
distributions of the dimensionless Reynolds frictional stress in the inner region (y/é = 0.1) and in the outer
region (y/8 = 0.7), calculated either according to the relaxation theory (solid lines) or according to the Bous~
sinesq relation (dashed lines) and based on experimental data according to Tsuij—Morikawa (dots).

An analysis of the data in Fig. 2 reveals that the Boussinesq "local™ relation predicts the distribution
of stress T with sufficient accuracy in the nozzle zone III bhut inaccurately in the diffuser zones II and IV, also
that the agreement between stress 7, calculated according to the relaxation theory and determined experimen-
tally improves upon transition from inner region (Fig. 2a) to outer region (Fig. 2b) of the boundary layer. With
trangsition from a nozzle zone to a diffuser zone, therefore, the relative influence of "memory" effects on the
shape of the profiles of the Reynolds frictional stress increases from inner region to outer region. This is
attributable to the increase of the characteristic dimension of turbulent "vortices" as well as to the attendant
trend toward a more uniform average-velocity field, i.e., the decrease of the derivative du/8y. The more
uniform the average-velocity field becomes, the more pronounced become nonlocal effects of the "memory"
of turbulent "vortices." In calculations pertaining to turbulent boundary layers with relatively large "vor-
tices" and small nonuniformity of the average-velocity field, therefore, the Boussinesq "local" relation must
be replaced with more intricate relations taking into account the flow "history.”
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Fig. 2. Dimensionless Reynolds frictional stress as function of
the x-coordinate (m): (a) y/6 = 0.1; (b) y/6 = 0.7: 1) according to
solution to Eq. (1); 2) according to Boussinesq relation; dots rep-
resent experimental data.



NOTATION

T, Reynolds frictional stress; < >, averaging in time; p, density; x, longitudinal coordinate; y, trans-
verse coordinate; u', longitudinal fluctuation velocity; v, transverse fluctuation velocity; u, average longitu-
dinal velocity; Ly, path length of longitudinal relaxation; p4;, eddy dynamic viscosity; %, K, a, empirical
constants; x', x", integration variables in relation (2); subscript 0 refers to the value of a quantity in the ini-
tial section; ug, average velocity at the outer edge of a boundary layer; 6%, displacement thickness; 6**,
momentum thickness; and 6, local thickness of a boundary layer.
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CORRELATION BETWEEN AMPLITUDES OF HARMONIC
COMPONENTS OF VELOCITY PULSATIONS

A. A. Kharenko and A. M. Xharenko UDC 532.517.4

A correlation is empirically established between the amplitudes of harmonic components of
velocity pulsations of a turbulent flow next to a wall.

In analyzing histograms of velocity pulsations for turbulent steady-state flow, the flow regime is oiten
modeled as a steady, stochastic process. This makes it possible to represent it as a set of elemental har-
monic components. Here, it is assumed that the harmonic components are not coupled to each other (do not
correlate), so that, within the framework of this model, it is sufficient to find the dispersion of the compo-
nents (spectra). The sum of these components, meanwhile, equals the power of the process,

In studying the mechanism by which energy is transferred from one perturbation to another, it is of
interest to know not only the dispersion of the components, but also the parameters of their interaction.
Here, we note that the possibility of a connection existing between the components is probabilistic rather than
rigorous (determined), since energy is divided and transferred at random moments of time and the division
takes place on structures with random dimensions.

As concerns correlations between harmonic components, it is necessary to regard the process as un-
steady, i.e., its characteristics will depend on time, and the sum of the dispersions of the components (spec-
tra) will not be equal to the power of the process, since part of this power is spent on the interaction between
the components. The periods of transience which occur due to the correlation between the components may
be comparable to the periods of these components, so that they cannot be detected by the time-averaging
methods of analysis which are widely used.

Harmonizable processes [1-3], which can be grouped into several classes, may serve as a model of a
signal representing velocity pulsations in steady flow which will allow for a correlation between the (harmo-
nic) components, Dragan introduced the class of D-barmonizable processes, the criterion of which is a finite
total dispersion of the components. This condition is satisfied for velocity histograms.
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