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Reynolds  re laxa t ion  of fricLional s t r e s s  is  analyzed in a nonequi l ibr ium turbulent  boundary 
l a y e r  with sign r e v e r s i n g  longitudinal p r e s s u r e  gradient .  

Relaxat ion  Phenomena  in Turbulent  Boundary  Laye r .  In recen t  studies of turbulent  boundary l a y e r s ,  
t he re  a p p e a r s  a dis t inct  t r end  away f r o m  the use of Bouss inesq ' s  c lass ica l  re la t ion  fo r  de termining  the local  
Reynolds  f r ic t ional  s t r e s s  ~" = - p < u' v '  > and toward  the use of new relaxat ional  re la t ions  between f r ic t ional  
s t r e s s  and a v e r a g e - v e l o c i t y  f ield instead.  An example  is  the Hinze re laxat ion equation [I] 

a~ au (1) 

f r ee  of local  botmdedness.  Without the LxO~'/Ox on the lef t -hand side,  this  equation becomes  the Bouss inesq  
equation fo r  local  s t r e s s .  According to the re laxa t ion  equation, the magnitude of the Reynolds f r ic t ional  
s t r e s s  s t  some  point  depends on magni tudes  of the Reynolds  s t r e s s  in the u p s t r e a m  region preceding  that point 
and thus on the "h i s to ry"  of the s t r e a m .  The re laxa t ion  equation, t he r e fo re ,  e x p r e s s e s  the abi l i ty of a "vo r -  
t i ca l "  s t r u c t u r e  of tu rbulence  to " m e m o r i z e "  the preceding  flow conditions. 

In Eq. (I) we have L x denoting the path length of longitudinal relaxation, here assumed 'to be Lx = ax 
(value of the proportionality factor a is, according to experimental data [2], within the 0.3-0.4 range), and 
t~ t denoting the eddy dynamic viscosity according to Boussinesq. The relaxation equation (i) can be derived 
from 'the equation of stress Lransfer for Reynolds frictional stress, with several simplifications. An essential 

factor is 'that the equation has a solution in quadr~tures 

/ Ix'  " ~,,au/@ exp - -  ix', (2) 
T = % exp k--  Lx (x') -k L~ (x') L= (x ~) 

X o x c X '  

where  x 0 and T o a r e ,  r e spec t ive ly ,  the a b s c i s s a  and the Reynolds f r ic t ional  s t r e s s  cor responding  to y in the 
init ial  sect ion of the boundary  l a y e r  [2, 3]. 

The path  length L x of longitudinal re laxa t ion  has  a l r eady  been de te rmined  exper imen ta l ly  and the va l i -  
dity of the re laxa t ion  Eq. (1) has  been ver i f ied  in specif ic  cases  [2]. In that  study [2], f o r  ins tance ,  the r e -  
laxat ion of ave r age  and fluctuation c h a r a c t e r i s t i c s  of a s t r e a m  in a turbulent  boundary l aye r  at longitudinally 
s t r e a m l i n e d  p la te  was  examined.  A lmi f - sphe re  res t ing  on the plate  sur face ,  with a radius  equal to approx i -  
m a t e l y  49% of the local  th ickness  of  the boundary l aye r ,  s e rved  as  b a r r i e r  per tu rb ing  the s t r eam.  M e a s u r e -  
me~ts  of the Reynolds  s t r e s s  at var ious  d is tances  f r o m  the pla te  sur face  revea led  that  the re laxat ion  path  had 
become longer  upon t r ans i t ion  f r o m  inner  to ou te r  region of the turbulent  boundary l aye r ,  with the Reynolds 
s t r e s s  p e r t u r b e d  by the h a l f - s p h e r e  re turning to i t s  unper turbed  level  at cor respondingly  f a r t h e r  a b s c i s s a s  x. 
Thus,  by m e a s u r i n g  the tu rbu lence  c h a r a c t e r i s t i c s  of a s t r e a m  in the p r o c e s s  of re laxat ion,  P. J. H. Buil t jes  
conf i rmed  the fundamental  conclusion at which F. Klause r  had a r r i v e d  in 1959 a l r eady  [4] on the bas i s  of m e a -  
s u r e m e n t s  of re laxing veloci ty  p ro f i l e s  in a turbulent  boundary l a y e r  at a plate with a cyl inder  se rv ing  as 
p e r t u r b a t o r .  K1auser ' s  t heo ry  r educes  to the following: the ou te r  region of a boundary l aye r  with l a rge  " v o r -  
t i c e s "  r e t u r n s  to i t s  unper tu rbed  s ta te  s lower  than the inner  region with " s m a l l e r "  vor t i ces  does.  This means  
the abi l i ty  of turbulent  "vo r t i ce s"  to " m e m o r i z e "  the p reced ing  s ta tes  of a s t r e a m  i n c r e a s e s  as  the i r  sca le  
i n c r e a s e s .  This  t r end  is  f u r t he r  conf i rmed  in the m o r e  iu t r ica te  case  of a nonequi l ibr ium turbulent  boundary 
l a y e r  with sign r e v e r s i n g  p r e s s u r e  gradient .  
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Fig. I. "Outer" velocity ue (m/see) as 
function of longitudinal coordinate x 
(m): If, IV) diffuser zones; III) nozzle 
zone. 

"Memory" Effects in Turbulent Boundary Layer with Sign Reversing Pressure Gradient. The author has 
evaluated the results of measurements, wide in scope and quite accurate, made by the Japanese scientists 
Tsuij and Morikawa [5] in experiments involving a turbulent boundary layer with pressure gradient. A longi- 
tudinal distribution of 'the pressure gradient was established by means of a flexible wall shaped so as to pro- 
duce a boundary layer without separation in the diffuser zones and without restoration of laminar flow in the 
nozzle zones. The corresponding velocity u e distribution along 'the outer edge of 'the boundary layer is shown 
in Fig. i. Study [5] contains experimental data only, without theoretical discussion. For determining the 
Reynolds frictional stress according to the Boussinesq "local" relgtion, this author used the two-layer method 
of stipul~ting the eddy dynamic viscosity according to Praudtl/~t = P~42Y 20u/0y (~ = 0.4) in the inner region and 
according to Klauser ttt = p Kue6* (K = 0.0168) in the outer region of the boundary layer [6]. The derivative 
0u/0y was determined 'through graphical differentiation of experimental velocity profiles in sections of the 

boundary layer. After 'the local Reynolds frictional stresses had been determined, "relaxation" analogs were 
caleul~ted according 'to rel~tion (2). As 'the initial value ~'0 was used as the experimental one in the first mea- 
sured ~--profile (x = 1.9 m) with the corresponding value of the dimensionless distance from the wall. The path 
length of longitudinal relaxation was stipul~ted according 'to the relation L x = 150 5 * *, which in 'the absence of 
a pressure gradierzt coincides with 'the Builtjes length L x = 0.31x [2]. The graph in Fig. 2 depicts longitudinal 
distributions of the dimensionless Reynolds frictional stress in the inner region (y/6 = 0.i) and in the outer 
region (y/8 = 0. 7), caleul~ted either according to the relaxation 'theory (solid lines) or according to the ]3ous- 
sinesq relation (dashed lines) and based on experimental d~ta according to Tsuij-Morikawa (dots). 

An analysis of the d~ta in Fig. 2 reveals 'that the Boussinesq "local" rel~tion predicts 'the distribution 
of stress ~" with sufficient accuracy in the nozzle zone III but inaccur~itely in 'the diffuser zones II and IV, also 
'that the agreement between stress "r, calculated according to the relaxation theory and determined experimen- 
'tally improves upon transition from inner region (Fig. 2a) to outer region (Fig. 2b) of the boundary layer. With 
transition from a nozzle zone to a diffuser zone, therefore, the relative influence of "memory" effects on the 
shape of the profiles of the Reynolds frictional stress increases from inner region to outer region. This is 
attributable to the increase of 'the characteristic dimension of turbulent "vortices" as well as to the attendant 
trend toward a more uniform average-velocity field, i.e., the decrease of the derivative 0u/~y. The more 
uniform the average-velocity field becomes, the more pronounced become nonloeal effects of the "memory" 
of turbulent "vortices." In calcul~tions pertaining to 'turbulerzt boundary layers with relatively large "vor- 
tices" and small nontmiformity of the average-velocity field, therefore, the Boussinesq "local" relation must 
be replaced with more intricate rel~tions taking into account the flow "history." 
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Fig. 2. Dimensionless Reynolds frictional stress as function of 
the x-coordinate (m): (a) y/6 = 0.i; (b) y/5 = 0.7: I) according 'to 
solution 'to Eq. (i); 2) according to Boussinesq relation; dots rep- 
resent experimental data. 
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NOTATION 

T, Reynolds frictional stress;  < >, averaging in time; p, density; x, longitudinal coordinate; y, t rans-  
verse coordinate; u', longitudinal fluctuation velocity; v', t ransverse  fluctuation velocity; u, average longitu- 
dinal velocity; L x, p~th length of longitudinal relaxation; ~t, eddy dynamic viscosity; z ,  K, a, empirical 
constants; x ' ,  x",  integration variables in relation (2); subscript 0 re fe r s  to the value of a quantity in the ini- 
tial section; u e, average velocity at the outer edge of a boundary layer; 6 *, displacement thickness; 6**, 
momentum 'thickness; and ~, local 'thickness of a boundary layer.  
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CORRELATION BETWEEN AMPLITUDES OF 

COMPONENTS OF VELOCITY PULSATIONS 
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H A R M O N I C  

UDC 532.517.4 

A correlation is empirically established between the amplitudes of harmonic components of 

velocity pulsations of a turbulent flow next to a wall. 

In analyzing histograms of velocity pulsations for turbulent steady-state flow, the flow regime is often 
modeled as a steady, stochastic process. This makes it possible to represent it as a set of elemental har- 
monic components. Here, it is assumed that the harmonic components are not coupled to each other (do not 
correlate), so that, within the framework of this model, it is sufficient to find the dispersion of the compo- 
nents (spectra). The sum of these components, meanwhile, equals the power of the process. 

In studying the mechanism by which energy is 'transferred from one perturbation to another, it is of 

interest to know not only the dispersion of the components, but also the parameters of their interaction. 
Here, we note that the possibility of a connection existing between the components is probabilistic rather than 
rigorous (determined), since energy is divided and transferred ~t random moments of time and the division 

takes place on structures with random dimenslons. 

As concerns correlations between harmonic components, it is necessary to regard the process as un- 
steady, i.e., i~ts characteristics will depend on time, andthe sum of the dispersions of the components (spec- 
tra) will not be equal to the power of the process, since part of this power is spent on the interaction between 
the components. The periods of transience which occur due to the correlation between the components may 
be comparable to the periods of these components, so that they cannot be detected by the time-averaging 

methods of analysis which are widely used. 

Harmonizable processes [i-3], which can be grouped into several classes, may serve as a model of a 
signal representing velocity pulsations in steady flow which will allow for a correlation between the (harmo- 
nic) components. Dragan introduced the class of D-harmonizable processes, the criterion of which is a finite 
total dispersion of the componen%s. This condition is satisfied for velocity histograms. 
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